加入收藏
举报
02-12 12:59
#0
斯坦福数值分析公开课学习资料,内容丰富,介绍了数值分析常见的内容,涵盖了机器学习中绝大多数优化方法,部分作业难度较大。
1.Introduction; numerics; error analysis2个子项
10.Systems of equations; optimization in one variable2个子项
11.Optimization Multiple variables, constraints2个子项
12.Conjugate gradients I Gradient descent, setup1个子项
13.Conjugate gradients II Formulation, preconditioning, and variants1个子项
14.Interpolation1个子项
15.Numerical integration and differentiation1个子项
16.Initial value problems and basics of ODE1个子项
17.Time-stepping strategies1个子项
18.PDE I Examplestheory, derivative operators1个子项
19.PDE II Basic solution techniques2个子项
2.Linear systems and LU1个子项
3.More LU; conditioning and sensitivity2个子项
4.Designing linear systems (incl. least-squares); special structure (Cholesky, sparsity)1个子项
5.Column spaces and QR2个子项
6.Eigenproblems How they arise, properties1个子项
7.Eigenproblems II Algorithms1个子项
8.Eigenproblems III QR iteration, conditioning; singular value decomposition (SVD)2个子项
9.Nonlinear equations and convergence analysis2个子项
作业10个子项
hw03个子项
hw13个子项
hw23个子项
hw33个子项
hw43个子项
hw53个子项
hw64个子项
code4个子项
hw74个子项
code1个子项
hw84个子项
code10个子项
参考资料4个子项
讲义以及参考书3个子项
Doraemonzzz/CS205A-Mathematical-Methods-for-Robotics--Vision--and-Graphics
斯坦福数值分析公开课:CS205A 机器人、视觉和图形的数学方法
点赞 回复
回帖
支持markdown部分语法 ?