文件名称:
第三章作业.md
所在目录:
大二下 / 随机过程 / 一至四章作业(md版)
文件大小:
3.56 KB
下载地址:
文本预览:
# 第三章作业
## 3.7
**proof:**
$$
\because F符合(0,1)的均匀分布\\
\therefore 由更新方程有,
m(t)=t+\int^t_0(t-s)ds=t+\int^t_0m(y)dy\\
同时求导,且m(0)=0,得:\\
m'(t)=1+m(t)\\
m(t)=e^t-1\\
\therefore E[N(t)+1]=m(t)+1\\
即,t=1时,E[N(1)+1]=m(1)+1=e
$$
## 3.8
解:
(a)
$$
P\{X_1\le x_1,\dots,X_n\le x_n,N(t)=n\}\\
=\int_{y_1\le x_1}\dots\int_{y_n\le x_n}P\{X_{n+1}>t-\sum^n_{i=1}y_i\}dF(y_1)\dots dF(y_n)\\
=\int_0^1\dots\int_0^1I\{y_1\le x_1,\dots,y_n\le x_n\}\overline F(t-\sum^n_{i=1}y_i)dF(y_1)\dots dF(y_n)\\
\because 积分次序改变不会影响积分结果\\
\therefore 对N(t)=n,X_1,..,X_n是可交换的\\
又\because 在时刻为t的X_{n+1}分布与其他时间不同\\
\therefore 不可交换\\
$$
(b)
$$
\because 由(a)得,E(X_1)=\dots=E(X_n)\\
\begin{align}
E[\frac{X_1+..+X_n(t)}{N(t)}|N(t)=n]
&=E[\frac{X_1+..+X_n(t)}{n}|N(t)=n]\\
&=\frac{1}{n}\sum_{i=1}^nE[X_i|N(t)=n]\\
&=E[X_1|N(t)=n]\\
\end{align}
$$
(c)
$$
\begin{align}
&\because E[\frac{X_1+..+X_n(t)}{N(t)}|N(t)>0]\\
&\Leftrightarrow\sum_{n=1}^\infty E[\frac{X_1+..+X_n(t)}{N(t)}|N(t)=n]P(N(t)=n|N(t)>0)\\
&\Leftrightarrow\sum_{n=1}^\infty E[X_1|N(t)=n]P(N(t)=n|N(t)>0)\\
&\Leftrightarrow E[X_1|N(t)>0]\\
&\Leftrightarrow E[X_1|X_1
&得证.
\end{align}
$$
## 3.17
解:
(a)
$$
\begin{align}
&P(t)=\int^\infin_0P\{t时刻处于开状态|Z_1+Y_1=s\}dF(s)\\
&=\int_0^tP(t-s)dF(s)+\int^\infin_tP\{Z_1>t|Z_1+Y_1=s\}dF(s)\\
&=\int_0^tP(t-s)dF(s)+P\{Z_1>t\}
\end{align}
$$
(b)
$$
\begin{align}
g(t)&=\int_0^\infty E[A(t)|X_1=s]dF(s)\\
&=\int_0^t g(t-s)dF(s)+\int_1^\infty dF(s)
\\&=\int_0^t g(t-s )dF(s)+t\overline F(t)\\
P(t)&: \frac{\int_0^\infty P(Z_1>t)dt}{\mu_F}=\frac{E[Z]}{E[Z]+E[Y]}\\
g(t)&: \frac{\int_0^\infty t\overline F (t)dt}{\mu}\\&=\frac{\int_0^\infty t \int_0^\infty dF (s)dt}{\mu}\\&=\frac{\int_0^\infty \int_0^s tdt dF (s)}{\mu}\\&=\frac{\int_0^\infty s^2 dF (s)}{2\mu}\\&=\frac{E[X^2]}{2E[X]}
\end{align}
$$
## 3.27
**proof:**
$$
\begin{align}
E[R_{N(t)+1}]&=\int_0^tE[R_{N(t)+1}|S_{N(t)}=s]\overline F(t-s)dm(s)+E[R_{N(t)+1}|S_{N(t)}=0]\overline F(t)\\
&=\int_0^tE[R_{1}|X_1>t-s]\overline F(t-s)dm(s)+E[R_1|X_1>t]\overline F(t)\\
&\to\int_0^\infin E[R_1|X_1>t]\overline F(t)dt/\mu\\
&=\int_0^\infin \int_t^\infin E[R_1|X_1=s]dF(s)dt/\mu\\
&=\int_0^\infin \int_0^s dtE[R_1|X_1=s]dF(s)/\mu\\
&=\int_0^\infin sE[R_1|X_1=s]dF(s)/\mu\\
&=E[R_1X_1]/\mu\\
\end{align}
$$
$$
其中\mu=E[X_1],\\
\because Var(X)>0,\\
\therefore E[X^2]>(E[x])^2\\
即,\lim_{t\rightarrow \infty}E[X_{N(t)+1}]>E[x]总成立\\除非P(X=C)=1.
$$
## 3.32
解:
(a)
$$
\because该过程为再现过程\\
\therefore
P_0=1-\lim_{t\to\infty}\frac{服务时间}{t}=1-\frac{E[E(\sum_1^NY_i|N=n)]}{E[E(\sum_1^NX_i|N=n)]}=1-\lambda\mu_G\\
$$
(b)
$$
\because 由泊松过程的独立性可知:\\
不管忙期何时结束,一个周期内闲期时间的均值相等,即\\
E(X)=\frac{1}{\lambda}\\
\therefore \frac{1}{1-\lambda\mu_G}\cdot\lambda\mu_G\cdot\frac{1}{\lambda}=\frac{\mu_G}{1-\lambda\mu_G}\\
$$
(C)
$$
E(\sum_1^NY_i)=E(N)E(Y)\\
\Rightarrow E(N)=\frac{1}{1-\lambda\mu_G}
$$
## 3.34
解:
$$
只需找出在初始状态到达后永远不空的例子即可\\
这里,不妨假设P(X
则当p\{X=1\}=1且Y\sim U(2,3)时\\
k=3,原式不成立\\
$$
## 3.36
**proof:**
$$
\begin{align}
\lim_{t\rightarrow \infty}\int_0^t\frac{r(X(s))ds}{t}
&=E[\int_0^Tr(X(s))ds]/E(T)\\
&=\frac{E[\sum_jr(j)(在T其间处于i的时间总量)]}{E[T]}\\
&=\sum_jP_jr(j)\\
\end{align}
$$
## 3.7
**proof:**
$$
\because F符合(0,1)的均匀分布\\
\therefore 由更新方程有,
m(t)=t+\int^t_0(t-s)ds=t+\int^t_0m(y)dy\\
同时求导,且m(0)=0,得:\\
m'(t)=1+m(t)\\
m(t)=e^t-1\\
\therefore E[N(t)+1]=m(t)+1\\
即,t=1时,E[N(1)+1]=m(1)+1=e
$$
## 3.8
解:
(a)
$$
P\{X_1\le x_1,\dots,X_n\le x_n,N(t)=n\}\\
=\int_{y_1\le x_1}\dots\int_{y_n\le x_n}P\{X_{n+1}>t-\sum^n_{i=1}y_i\}dF(y_1)\dots dF(y_n)\\
=\int_0^1\dots\int_0^1I\{y_1\le x_1,\dots,y_n\le x_n\}\overline F(t-\sum^n_{i=1}y_i)dF(y_1)\dots dF(y_n)\\
\because 积分次序改变不会影响积分结果\\
\therefore 对N(t)=n,X_1,..,X_n是可交换的\\
又\because 在时刻为t的X_{n+1}分布与其他时间不同\\
\therefore 不可交换\\
$$
(b)
$$
\because 由(a)得,E(X_1)=\dots=E(X_n)\\
\begin{align}
E[\frac{X_1+..+X_n(t)}{N(t)}|N(t)=n]
&=E[\frac{X_1+..+X_n(t)}{n}|N(t)=n]\\
&=\frac{1}{n}\sum_{i=1}^nE[X_i|N(t)=n]\\
&=E[X_1|N(t)=n]\\
\end{align}
$$
(c)
$$
\begin{align}
&\because E[\frac{X_1+..+X_n(t)}{N(t)}|N(t)>0]\\
&\Leftrightarrow\sum_{n=1}^\infty E[\frac{X_1+..+X_n(t)}{N(t)}|N(t)=n]P(N(t)=n|N(t)>0)\\
&\Leftrightarrow\sum_{n=1}^\infty E[X_1|N(t)=n]P(N(t)=n|N(t)>0)\\
&\Leftrightarrow E[X_1|N(t)>0]\\
&\Leftrightarrow E[X_1|X_1
\end{align}
$$
## 3.17
解:
(a)
$$
\begin{align}
&P(t)=\int^\infin_0P\{t时刻处于开状态|Z_1+Y_1=s\}dF(s)\\
&=\int_0^tP(t-s)dF(s)+\int^\infin_tP\{Z_1>t|Z_1+Y_1=s\}dF(s)\\
&=\int_0^tP(t-s)dF(s)+P\{Z_1>t\}
\end{align}
$$
(b)
$$
\begin{align}
g(t)&=\int_0^\infty E[A(t)|X_1=s]dF(s)\\
&=\int_0^t g(t-s)dF(s)+\int_1^\infty dF(s)
\\&=\int_0^t g(t-s )dF(s)+t\overline F(t)\\
P(t)&: \frac{\int_0^\infty P(Z_1>t)dt}{\mu_F}=\frac{E[Z]}{E[Z]+E[Y]}\\
g(t)&: \frac{\int_0^\infty t\overline F (t)dt}{\mu}\\&=\frac{\int_0^\infty t \int_0^\infty dF (s)dt}{\mu}\\&=\frac{\int_0^\infty \int_0^s tdt dF (s)}{\mu}\\&=\frac{\int_0^\infty s^2 dF (s)}{2\mu}\\&=\frac{E[X^2]}{2E[X]}
\end{align}
$$
## 3.27
**proof:**
$$
\begin{align}
E[R_{N(t)+1}]&=\int_0^tE[R_{N(t)+1}|S_{N(t)}=s]\overline F(t-s)dm(s)+E[R_{N(t)+1}|S_{N(t)}=0]\overline F(t)\\
&=\int_0^tE[R_{1}|X_1>t-s]\overline F(t-s)dm(s)+E[R_1|X_1>t]\overline F(t)\\
&\to\int_0^\infin E[R_1|X_1>t]\overline F(t)dt/\mu\\
&=\int_0^\infin \int_t^\infin E[R_1|X_1=s]dF(s)dt/\mu\\
&=\int_0^\infin \int_0^s dtE[R_1|X_1=s]dF(s)/\mu\\
&=\int_0^\infin sE[R_1|X_1=s]dF(s)/\mu\\
&=E[R_1X_1]/\mu\\
\end{align}
$$
$$
其中\mu=E[X_1],\\
\because Var(X)>0,\\
\therefore E[X^2]>(E[x])^2\\
即,\lim_{t\rightarrow \infty}E[X_{N(t)+1}]>E[x]总成立\\除非P(X=C)=1.
$$
## 3.32
解:
(a)
$$
\because该过程为再现过程\\
\therefore
P_0=1-\lim_{t\to\infty}\frac{服务时间}{t}=1-\frac{E[E(\sum_1^NY_i|N=n)]}{E[E(\sum_1^NX_i|N=n)]}=1-\lambda\mu_G\\
$$
(b)
$$
\because 由泊松过程的独立性可知:\\
不管忙期何时结束,一个周期内闲期时间的均值相等,即\\
E(X)=\frac{1}{\lambda}\\
\therefore \frac{1}{1-\lambda\mu_G}\cdot\lambda\mu_G\cdot\frac{1}{\lambda}=\frac{\mu_G}{1-\lambda\mu_G}\\
$$
(C)
$$
E(\sum_1^NY_i)=E(N)E(Y)\\
\Rightarrow E(N)=\frac{1}{1-\lambda\mu_G}
$$
## 3.34
解:
$$
只需找出在初始状态到达后永远不空的例子即可\\
这里,不妨假设P(X
k=3,原式不成立\\
$$
## 3.36
**proof:**
$$
\begin{align}
\lim_{t\rightarrow \infty}\int_0^t\frac{r(X(s))ds}{t}
&=E[\int_0^Tr(X(s))ds]/E(T)\\
&=\frac{E[\sum_jr(j)(在T其间处于i的时间总量)]}{E[T]}\\
&=\sum_jP_jr(j)\\
\end{align}
$$
点赞
回复
X